Correlation and Path Analysis Studies in Safflower

Rajendra L.Bhakre¹, Madhuri B.Gawande² and R.K. Murkute³

¹Ph.D.Scholar, Department of Agril Botany, Dr.PDKV Akola ²Ph.D.Scholar, Biotechnology Center, Department of Agril Botany, Dr.PDKV Akola ³PG Student, Dr. PDKV Akola E-mail: ¹rajendrabhakre24may@gmail.com, ²gawandesonu@gmail.com

Abstract—The yield/plant was positively and significantly correlated with number of capitula/ plant, plant height, number of seed/capitula and 100 seed weight. Seed yield was also negatively correlated with height of insertion of first primary branch from ground level. Number of capitula/ plant inserted highest positive direct effect on seed yield/plant followed by number of seeds/ capitulum, plant height and 100 seed weight. The high residual effect of 0.578 indicate that there are some other characters, other than these which affect seed yield/plant and needed to be studied.

1. INTRODUCTION

Safflower (*Carthamus tinctorius* L.) is an important multipurpose oilseed crop grown in Maharashtra and Karnataka. Its oil is important for health because of high polyunsaturated content and believed to be ideal for tropical cooking condition. Safflower oil has good dying property and therefore it is used in the manufacture of paints, varnishes and linoleum. The green safflower crop is also used as green fodder for cattle. The productivity of safflower is very low mainly due to lack of genetically improved cultivars with high yield and oil content. So information on path analysis and correlation coefficient between seed yield and yield component is pre-requisite for crop improvement.

2. MATERIAL AND METHODS

The present study was carried out at Oilseed Research Unit, Dr. P.D.K.V, Akola during rabi-2010. 150 germplasm lines obtained from Germplasm Management Unit, Solapur were planted in augmented block design in five blocks along with five released varieties as checks (Bhima, Manjira, A-1, JSF-1 and HUS-305) which are common for all blocks. Each genotype was sown as single row plot of 4m length with spacing of 45 cm between rows and 20 cm between plants. The observations were recorded on five randomly selected plants in each. The relation between seed yield and yield contributing characters in Safflower was worked out by correlation studies described by Panse and Sukhatme (1957) while path coefficient analysis was carried out according to methods suggested by Dew and Lu (1959).

3. RESULTS AND DISCUSSION

The direct and indirect effects of various quantitative characters on seed yield/plant were assessed through path analysis and are indicated in table no.1. The number of capitula/plant (0.511) had the maximum positive direct effect on seed yield/plant. This is followed by seed/capitula (0.386), plant height (0.208) and 100 seed weight (0.198). Subbalakshmi and Sivasubramanian (1995) and Sarang *et al.* (2004) also reported that the number of capitulum/plant exerted highest positive direct effect on seed yield while it's positive indirect effect through primary branches/plant (0.395).

Table 1:	Path	matrix	of	seed	yield	in	safflower
----------	------	--------	----	------	-------	----	-----------

Chara cter	Day s to 50 % Flo weri ng	Day s to Ma turi ty	Pl an t He igh t (c m)	Hei ght of Ins erti on of 1st Pri ma ry bra nch	Pri mar y Bra nch es / Pla nt	No. of Capit ula/Pl ant	Capi tulu m Dia mete r (mm)	See ds/ Ca pit ulu m	10 0 Se ed W eig ht (g)	Oi l Co nt en t %
Days to 50 % Flower ing	- 0.11 76	- 0.0 743	- 0.0 48	- 0.04 03	0.01 81	0.0212	- 0.03 21	- 0.0 412	- 0.0 01	- 0.0 04 6
Days to Maturi ty Plant Height (cm)	0.09 38 0.08 51	0.1 483 0.0 963	0.0 68 6 0.2 08 2	0.04 53 0.04 65	- 0.01 67 0.05 14	- 0.0084 0.0443	0.03 15 0.08 39	0.0 437 0.0 583	0.0 22 5 0.0 50 7	0.0 24 3 0.0 18 6

Height	-	-	-	-	0.07	0.0662	-	-	-	-
of	0.04	0.0	0.0	0.12	75		0.02	0.0	0.0	0.0
Inserti	16	370	27	14			46	263	09	03
on of										2
1st										
Primar										
у										
branch										
Primar	-	-	0.0	-	0.01	0.0103	-	-	0.0	0.0
у	0.00	0.0	03	0.00	33		0.00	0.0	00	00
Branch	21	015	3	85			16	026	8	4
es/										
Plant										
No. of	-	-	0.1	-	0.39	0.5111	-	-	0.0	0.0
Capitu	0.09	0.0	08	0.27	51		0.07	0.0	14	02
la/Plan	21	291	8	87			78	859	0	0
t										
Capitu	-	-	-	-	0.00	0.0034	-	-	-	-
lum	0.00	0.0	0.0	0.00	27		0.02	0.0	0.0	0.0
Diame	62	048	09	46			26	164	05	04
ter(m										1
m)										
Seeds/	0.13	0.1	0.1	0.08	-	-	0.28	0.3	0.0	0.0
Capitu	52	139	08	35	0.07	0.0649	03	863	25	89
lum			2		65				0	3
100	0.00	0.0	0.0	0.01	0.01	0.0054	0.04	0.0	0.1	0.0
Seed	17	301	48	39	22		49	128	98	54
Weigh			3						0	9
t (g)										
Oil	0.00	0.0	0.0	0.00	0.00	0.0002	0.00	0.0	0.0	0.0
Conten	21	086	04	14	16		96	122	14	52
t %			7						6	6
Seed	0.05	0.2	0.4	-	0.47	0.5888	0.29	0.3	0.3	0.2
Yield/	83	504	65	0.26	88		14	411	11	30
Plant(7	29					1	4
g)										
Partial	-	0.0	0.0	0.03	0.00	0.3009	-	0.1	0.0	0.0
R ²	0.00	371	97	19	64		0.00	318	61	12
	69		0				66		6	1

Number of seeds/capitula shows significant positive direct effect on the seed vield followed by its indirect effect through capitulum diameter (0.280). 100 seed weight to some extent also shows positive direct effect on seed yield. In the present study only height of insertion of first primary branch from ground level (-0.121) and days to 50% flowering (-0.117) shows negative direct effect on seed yield. Malleschappa (1989) also reported that height of insertion of first primary branch is negatively associated with seed effect yield. But the negative direct effects are nullified by the positive indirect effect of number of seeds/capitula. The residual effect is very high i.e. 0.578 indicate that the characters under study contribute to just 42.16% only to the seed yield/plant. This indicates that there are some other characters which affect the seed yield. So these characters needed to be identify and included in the analysis to account full variation in the seed yield.

Table no.2 revealed that number of capitula/plant (0.588) is highly correlated with seed yield/plant. This is followed by

number of primary branches/plant (0.478), plant height (0.465), seeds/capitulum (0.341) and 100 seed weight (0.311). The character height of insertion of first primary branch from ground level (-0.262) is negatively correlated with that of seed yield/plant. Number of capitula/plant also shows a good correlation with primary branches/plant. Plant height is correlated with capitulum diameter seeds/plant, days to maturity, number of primary branches/ plant and 100 seed weight. Capitulum diameter shows significant correlations with number of seeds/capitula. Height of insertion of first primary branches/plant and number of primary branches of primary branches of primary branches of primary branches of first primary branches/plant. While it's significant positive association is found with days to 50% flowering, days to maturity and plant height.

 Table 2: Correlation of yield with other yield component of safflower

Sr.	Char	Day	Da	Pl	Hei	Pri	No. of	Capi	See	10	Oil
Ν	acter	s to	ys	ant	ght	mar	Capit	tulu	ds/	0	Co
0		50	to	He	of	у	ula/Pl	m	Capi	Se	nte
		%	Ma	ig	Ins	Bra	ant	Dia	tulu	ed	nt
		Flo	turi	ht	erti	nch		met	m	W	%
		weri	ty	(c	on	es/		er		eig	
		ng		m)	of	Plan		(mm		ht	
					1st	t)		(g)	
					Pri						
					mar						
					У						
					bra						
					nch						
1	Days	1.00	0.6	0.	0.3	-	-	0.27	0.35	0.0	0.0
	to 50	00	320	40	427	0.15	0.180	34	00	08	39
	%			88		36	2			5	0
	Flo										
	weri										
	ng		1.0								
2	Days	0.63	1.0	0.	0.3	-	-	0.21	0.29	0.1	0.1
	to	20	000	46	051	0.11	0.057	27	48	51	64
	Mat			25		26	0			8	0
2	urity	0.40	0.4	1	0.0	0.24	0.010	0.40	0.00	0.0	0.0
3	Plan	0.40	0.4	1.	0.2	0.24	0.212	0.40	0.28	0.2	0.0
	t	88	625	00	235	/1	8	30	01	43	89
	Heig			00						/	4
	nt (arra)										
4	(cm)	0.24	0.2	0	1.0			0.20	0.21	0.0	0.0
4	Heig	0.34	0.5	0.	1.0		-	0.20	0.21	0.0	0.0
	Int OI	21	051	25	000	0.05	0.343	20	05	/0	20
	tion			55		0/	4			1	1
	uon										
	01 1 st										
	1 St Deim										
	r'iiii oru										
	ai y bran										
	ch										
	CII	1					1	1			

5	Prim	-	-	0.	-	1.00	0.773	-	-	0.0	0.0
	ary	0.15	0.1	24	0.6	00	1	0.11	0.19	61	30
	Bran	36	13	71	387			83	79	6	7
	ches/										
	Plan										
	t										
6	No.	-	-	0.	-	0.77	1.000	-	-	0.0	0.0
	of	0.18	0.0	21	0.5	31	0	0.15	0.16	27	03
	Capi	02	57	28	454			22	80	3	9
	tula/										
	Plan										
	t										
7	Capi	0.27	0.2	0.	0.2	-	-	1.00	0.72	0.2	0.1
	tulu	34	127	40	028	0.11	0.152	00	55	26	82
	m			30		83	2			7	1
	Dia										
	mete										
	r(m										
	m)										
8	Seed	0.35	0.2	0.	0.2	-	-	0.72	1.00	0.0	0.2
	s/	00	948	28	163	0.19	0.168	55	00	64	31
	Capı			01		79	0			8	2
	tulu										
	m	0.00	0.1	0	0.0	0.06	0.007	0.00	0.07	1.0	0.0
9	100	0.00	0.1	0.	0.0	0.06	0.027	0.22	0.06	1.0	0.2
	Seed	85	518	24	/01	16	3	6/	48	00	//
	wei			31						0	4
	gnt(
1	g)	0.02	0.1	0	0.0	0.02	0.002	0.10	0.22	0.2	1.0
1	Cart	0.03	0.1	0.	0.0	0.03	0.003	0.18	0.23	0.2	1.0
0	Cont	90	640	08	201	07	9	21	12		00
	ent 0/			94						4	0
1	70 Sood	0.05	0.2	0		0.47	0.589	0.20	0.34	0.2	0.2
1	Viel	0.05	504	0. 16	02	0.47	0.300	0.29	0.54	11	30
1		03	504	40	620	00	0	14	11	1	30
	u/ Plan			57	029					1	4
	$f(\sigma)$										
L	1(8)						1				

The present study clearly revealed that the character number of capitula/plant, number of seeds/capitula, plant height and 100 seed weight has strong and positive association with seed yield and with each other. This indicates that the direct selection for these characters will enhance the breeding efficiency for seed yield in safflower.

REFERENCES

- [1] Dewey.D.R and K.H.Lu. 1959.A correlation and path coefficient analysis of components in crested wheat grass seed production.*Agron.J.*,**51**:515-518
- Malleshappa, C., J.V.Goud and S.S.Patil. 1989.Path analysis for seed yield in safflower.J.Maharashtra agric. Univ. 14(2):231-232
- [3] Panse, V.G. and P.V.Sukhatme. 1967. Statistical methods for agricultural workers. ICAR. New Delhi. 58-63.
- [4] Sarang, D.H., A.A.Chavan., V.N.Chinchane and B.M.Gore.2004.Correlation and path analysis in safflower.J.Maharashtra agric Univ. 29 (1):36-39
- [5] Subbalakshmi, B and V.Sivasubramanian. 1995. Variability and correlation in safflower. *Madras agric.J* 82(11):596-597.